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Communications to the Editor 

The Synthesis of Elaiomycin, a Naturally Occurring 
Azoxyalkene 

Sir: 

Two of the five naturally occurring azoxy compounds, 
macrozamin1 and cycasin,2 are glycosides of "methylazoxy-
methanol" , which has been prepared (as the acetate) from 
azoxymethane.3 However, syntheses of the mutually related, 
more complicated, proximal4 a, l8-(cw)-unsaturated azoxy-
alkenes, elaiomycin ( I ) 5 and L L - B H 8 7 2 a (2) ,6 require a 
general synthesis of azoxyalkanes and specific methods for the 
configurationally controlled introduction of unsaturation.7 

Despite a recent quickening of interest in azoxyalkanes, 8 9 

routes to 1 or 2 have remained obscure, although the biological 
significance of 110 (an antibiotic and a carcinogen) and 2 6 a (an 
antifungal agent) makes syntheses highly desi rable ." 
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We are therefore pleased to report the total synthesis of 1 
from D-threonine by a three-phase synthetic approach: (A) 
construction of the distal moiety of 1, including the azoxy 
function; (B) elaboration of a proximal trans-octenyl group; 
(C) isomerization to the cw-octenyl group. This approach was 
based on key synthetic methods discovered in our laborato
r y . ' 2 - 1 6 A detailed description follows. 
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(A) The distal group. ' 2~'4 As in the synthesis of dihydroe-
laiomycin, 3 , 1 4 D-threonine was converted to pivotal urethane 
4 by extension of Stevens' method for synthesis of the corre
sponding amine. The hydrochloride salt of D-threonine ethyl 
ester was reacted with ethyl benzimidate to yield oxazoline 5 
(52%). Reduction of 5 (LiAlH 4 , 94%) gave 6,17 which was 
converted (92%) to methyl ether 7 using N a H / C H 3 I in 
T H F . 1 8 Ether 7 was identical with a sample prepared from 
6-OTs and N a O C H 3 / C H 3 O H , 5 d 1 4 but the yield was higher 
in the N a H procedure, and oxazole 8 (a by-product of the 
methoxide procedure) was not formed. Hydrolysis of 7 (re-
fluxing 6 N HCl , 5 h, then 25 0 C , 12 h) gave benzoic acid 
(96%) and the aqueous amine-hydrochloride, which was 
neutralized ( N a 2 C O 3 ) and converted in situ (CICOOC 2 Hs , 
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93%) to 4, identical with a previously prepared sample . 1 4 1 9 

Treatment of 4 with ?-C 4 H 9 (CH 3 ) 2 SiCl (imidazole, D M F , 25 
0 C , 17 h ) 2 0 quantitatively afforded protected urethane 4-OG 
(see Chart I) , Its N M R spectrum resembled that of 4,1 4 but 
showed 5 0.87 (s, 9 H, J -C 4 A 9 ) and 0.03 (s, 6 H, Si(CZZ3)2). 
Quantitative conversion of 4-OG to the A^-nitrosourethane 
( A g cci 4 OCZZ2CH3 = 0.42)21 with ethereal N 2 O 4 was followed 
by cleavage to diazotate 9 using K O f - C 4 H 9 in e t h e r . 1 4 2 1 2 2 

Treatment of an H M P A solution of 9 with excess C H 3 I (25 
0 C , 12 h, 29% based on nitrosourethane) afforded azoxyalkane 
10, which was purified by repetitive T L C 2 3 (3:1 hexane/ether): 
N M R 5 4.03 (s, 3 H, CZZ 3 N(O)=N) ; 2 4 - 2 5 IR (neat) 1500 
c m - 1 (azoxy);12 exact mass ( M + - 15), calcd 261.1633, found 
261.1648. 

(B) Elaboration of the /ra/w-octenyl moiety.15 Azoxyalkane 
10 was converted to its proximal a-carbanion ( ( / -Pr ) 2 NLi , 
T H F , 0-5 0 C , 30 min) , 1 5 which was quenched with excess 
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H-heptaldehyde (0-5 0C, 1 h) quantitatively affording crude 
azoxy alcohol 11 (Z = H): NMR, 8 4.06 (m, 3 H, 
CZZN=N(O)CZZ2);

12.24 IR (neat), 3450 (OH), 1490 (azoxy) 
cm-1. Without purification, this was converted (CH3SO2CI, 
pyridine, 25 0C, 23 h, 94%) to mesylate 11 (Z = SO2CH3); 
NMR 8 2.86 (s, 3 H, CZZ3SO3).

24 The crude mesylate, under 
reflux in toluene containing excess triethylamine (20 h), gave 
protected /rans-elaiomycin, 12, which was purified by repet
itive TLC (9:1 hexane/ether). The yield of 12 was 13% from 
11 (Z = H): NMR 5 6.90 (m, 2 H, vinyl), 4.23 (m, 2 H, distal 
a-H + SiOCZZ), 3.58 (m, 2 H, CZZ2OCH3), 3.28 (s, 3 H, 
OCZZ3), 2.25 (m, 2H, allyl), (1.40(m, C5ZZH) + LU (d, J 
= 6 Hz, CHCZZ3) + 0.91 (s, (-C4H9), total ~23 H), 0.08 (s, 
6 H, Si(CZZ3)2); IR (neat) 1640 (C=C), 1460 (azoxy), 950 
(trans-disubstituted C=C) cm-1. The spectral properties of 
12 coincide with corresponding data for 3,14 trans-
CH3CH=CHN(0)=N-2-C8H17 ,15 and trans-n-C6Hu-
CH=CHN(0)=N-2-C4H9.26-27 

(C) Isomerization.16 Bromine (CCl4, 25 0C, 30 min, 100%) 
added to 12 yielding the corresponding eryr/iro-dibromide, 
whence deprotection20 (CH3COOH:H20:THF, 3:1:1, 25 0C, 
18 h, 95%) gave er/^ro-dibromoelaiomycin, 13, which was 
purified by repetitive TLC (3:1 hexane/ether): NMR, 8 5.96 
(d, J = 11 Hz, 1 H, proximal a-H), 4.65 (m, 1 H, proximal 
0-H), 4.11 (m, 2 H, distal a-H + HOCZZ), 3.58 (m, 2 H, 
CZZ2OCH3), 3.28 (s, 3 H, OCZZ3), 2.21 (br s, 1 H, OZZ), 
1.71-0.65 (m, residual alkyl); IR (neat), 3450 (OH), 1495 
(azoxy) cm-1.27 For comparison, the a- and /3-proximal pro
tons of eo>?/*ro-CH3CHBrCHBrN(0)=N-2-C8H,7 appear 
at <5 5.85 (d, J = 11 Hz) and 4.73 (m); its distal a-H appears 
at 5 4.00 (m).16 

Anti elimination of HBr from 13 (DBU, 25 0C, 30 min, 
75%)28 gave crude a-bromoelaiomycin, 14: NMR (CCl4, 
Me4Si), 8 5.92 (t, J = 8 Hz, 1 H, vinyl);24 IR (neat), 3400 
(OH), 1620 (C=C), 1460 (azoxy) cm-'. For comparison, the 
vinyl proton of Zi-CH3CH=CBrN(0)=N-2-C8H,7 appears 
at 8 5.96 (q, J = 7.5 Hz).16 Crude 14 was debrominated with 
powdered zinc (Mallinkrodt AR grade ether,29 containing 4 
vol % of 30 wt % aqueous CH3COOH, 25 0C, 24 h, 52%); re
petitive TLC (3:1 hexane/ether) afforded elaiomycin, 1, as 
well as unreacted 14.30 

Synthetic 1 contained a trace of carbonyl impurity (1740 
cm -1), but its IR spectrum was otherwise identical with the 
published spectrum53 of natural 1, including bands at 3450 
(OH), 1650 (C=C), 1455 (azoxy), and 785 (cis disubstituted 
C = C ?) cm"1. The UV spectrum gave Xmax

CH3°H 235, t 1.0 
X 104(l i t>b 237.5, 1.1 X 104). The NMR spectrum (CCl4, 
Me4Si) was persuasive: 8 6.83 ("d", J ~ 9 Hz, 1 H, proximal 
a-H),31 5.70 (q, J ~ 9 Hz, 1 H, proximal /3-H), 4.17 (m, 2 H, 
distal a-H + CZZOH), 3.58 (m, 2 H, CZZ2OCH3), 3.33 (s, 3 
H, OCZZ3), 2.70 (m, 2 H, allyl), 2.13 (m, 1 H, OZZ), 1.78-0.60 
(m, residual alkyl). Both natural 1 and 2 exhibit vinyl doublets, 
J = 9 Hz, at 8 6.83,6a and 2 exhibits a quartet at 8 5.83, J = 9 
Hz.6a In m-CH3CH=CHN(0)=N-2-C8Hi7, the corre
sponding vinyl signals appear at 8 6.70 ("d", J = 9 Hz) and 
5.73 (quintet, / = 8 Hz).16 Other NMR signals of synthetic 
1 are in accord with structural expectation.63'14'32 

Reduction of synthetic 1 (5% Rh/Al203, 1 atm of H2, 
CH3OH, 1 h) gave dihydroelaiomycin, identical in NMR 
spectrum14 and TLC behavior with an authentic sample pro
duced via alkylation of 9 (G = tetrahydropyranyl) with n-
C8H17I.14 

Synthetic 1 had [a]24
D +24.0° (c 2.8, ethanol), 62.5% of 

the rotation of natural l.5a It is possible that the apparent loss 
of optical activity is due to the presence of a trace of highly 
levorotatory impurity in the synthetic I.31 Alternatively, a 
dextrorotatory impurity may have been present in natural 
J_5a,33 

The overall yield for the 18-step conversion of D-threonine 

to 1 was only 0.55%, but we have not optimized the key low-
yield steps 9 -» 10 and H-OMs -» 12, so that an enhanced 
yield should be attainable. This initial synthesis of elaiomycin 
employs strategies which are applicable to 2 and synthetic 
analogues. Moreover, the crucial sequences substantially 
broaden the scope of azoxyalkane chemistry.34 
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Berninamycin. 3. Total Structure of Berninamycin A1 '2 

Sir: 

In earlier reports1"3 from this laboratory we have described 
the results of initial structural studies on the novel, sulfur-
containing antibiotic berninamycin A, which is a potent in
hibitor of bacterial protein synthesis. Degradation products 
obtained from acidic hydrolysis, methanolysis, and acetolysis 
of berninamycin A allowed the assignment of the structural 
subunits shown in the top row of Figure 1,2 which account for 
the total composition of the antibiotic. In the present com
munication, we assign the total structure of berninamycin A 
as 1, based upon new compounds obtained by trifluoroaceto-
lysis of the intact antibiotic and its sodium borohydride-re-
duced and catalytically hydrogenated derivatives. 

Treatment of berninamycin A with trifluoroacetic acid at 
room temperature for 18 h afforded three major compounds 
(Figure 2). The least polar compound was identified as the 
previously reported 2.2 A second compound (mp 109-110 0C; 
C[5H2oN406)4a was assigned structure 3. As previously dis
cussed,2 the residues (Deala, Thr, Hyval, Ox-A, Ox-B, Ber-
ninamycyl) which comprise berninamycin A have unique 1H 
NMR resonances which allow their identification in degra-
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dation products formed from the intact antibiotic. The 1H 
NMR spectrum of 3 contains the resonances assignable2 to the 
Hyval (1.40 ppm, s, 3 H; 1.50, s, 3 H; 5.49, d, 7 Hz, 1 H) and 
Ox-A (2.63, s, 3 H; 2.04, s, 3 H) residues and to a pyruvyl unit 
(2.42 ppm, s, 3 H). 

The pyruvyl residue (which results from cleavage of a Deala 
residue)2 can only occupy the N-terminal position, and a 
structure including the sequence Ox-A-*Hyval is eliminated 
by subunit a of Figure 1. Thus, the expected structure for the 
second trifluoroacetolysis product would be pyruvyl—* 
Hyval-»-Ox-A—"-NH2 (4), a structural isomer of 3. The 1,3-
tetrahydrooxazine ring of 3 results from intramolecular ad
dition of the hydroxyl group of Hyval to the enamine of Ox-A 
in 4 during trifluoroacetolysis. Combination of the sequence 
of 4 with subunit a allows the assignment of c (Figure 1) as a 
sequence in the intact antibiotic. 

The most polar compound from trifluoroacetolysis of 1 is 
assigned structure 5 (mp 153 0 C dec; 027H26N8O8S).43 The 
1H NMR spectrum of 5 has resonances assignable2 to Thr, 
Ox-B, Deala, and Berninamycyl (Figure 1). These residues, 
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Figure 1. Subunit sequences found in berninamycin A. Subunits shown in the top line were established earlier.2 
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